Simplicial principal bundles in parametrized spaces
نویسندگان
چکیده
In this paper we study the classifying theory of principal bundles in the parametrized setting, motivated by recent interest in higher gauge theory. Using simplicial techniques, we construct a product-preserving classifying space functor for groups in the category of spaces over a fixed space B. Additionally, we prove that the fiberwise geometric realization functor sends a large class of simplicial parametrized principal bundles to ordinary parametrized principal bundles. As an application we show that the fiberwise geometric realization of the universal simplicial principal bundle for a simplicial group G in the category of spaces over B gives rise to a parametrized principal bundle with structure group |G|.
منابع مشابه
Parametrized Spaces Model Locally Constant Homotopy Sheaves
We prove that the homotopy theory of parametrized spaces embeds fully and faithfully in the homotopy theory of simplicial presheaves, and that its essential image consists of the locally homotopically constant objects. This gives a homotopy-theoretic version of the classical identification of covering spaces with locally constant sheaves. We also prove a new version of the classical result that...
متن کاملParametrized Spaces Are Locally Constant Homotopy Sheaves
We prove that the homotopy theory of parametrized spaces embeds fully and faithfully in the homotopy theory of simplicial presheaves, and that its essential image consists of the locally homotopically constant objects. This gives a homotopy-theoretic version of the classical identification of covering spaces with locally constant sheaves. We also prove a new version of the classical result that...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملPrincipal ∞-bundles – Presentations
We discuss two aspects of the presentation of the theory of principal ∞-bundles in an ∞-topos, introduced in [NSSa], in terms of categories of simplicial (pre)sheaves. First we show that over a cohesive site C and for G a presheaf of simplicial groups which is C-acyclic, G-principal ∞-bundles over any object in the ∞-topos over C are classified by hyper-Čech-cohomology with coefficients in G. T...
متن کاملBundles over Quantum RealWeighted Projective Spaces
The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...
متن کامل